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Figure 1: Example workflow of two novice subjects editing materials using three different interfaces for material design. Goals can be found
in Fig. 2. Errors computed from equation (4) can be found in Fig. 7.

Abstract

Material design is the process by which artists specify the re-
flectance properties of a surface, such as its diffuse color and spec-
ular roughness. We present a user study to evaluate the relative
benefits of different material design interfaces, focusing on novice
users since they stand to gain the most from intuitive interfaces.
Specifically, we investigate the editing of the parameters of analytic
bidirectional distribution functions (BRDFs) using three interface
paradigms: physical sliders by which users set the parameters of
analytic BRDF models, such as diffuse albedo and specular rough-
ness; perceptual sliders by which users set perceptually-inspired
parameters, such as diffuse luminance and gloss contrast; and im-
age navigation by which material variations are displayed in arrays
of image thumbnails and users make edits by selecting them.

We investigate two design tasks: precise adjustment and artistic ex-
ploration. We collect objective and subjective data, finding that sub-
jects can perform equally well with physical and perceptual slid-
ers as long as the interface responds interactively. Image naviga-
tion performs worse than the other interfaces on precise adjustment
tasks, but excels at aiding in artistic exploration. We find that given
enough time, novices can perform relatively complex material edit-
ing tasks with little training, and most novices work similarly to one
another.
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1 Introduction

Real-world materials exhibit a wide variety of reflectance behav-
iors, from matte surfaces to highly glossy finishes. For opaque ma-
terials, the bidirectional reflectance distribution function (BRDF)
[Nicodemus et al. 1977] captures the directionally-varying appear-
ance of real-world surfaces. Material design is the process by which
artists define properties of surface materials, such as their color,
specular roughness, etc. This can be a difficult and time consuming
task, since the variety of real-world materials is large. Many user
interfaces have been proposed to simplify the process.

This paper represents a first step toward quantitatively evaluating
the effectiveness of user interfaces for material design. We focus on
novice users without previous experience in material design since
they stand to gain the most from intuitive interfaces and represent
the majority of potential users of computer graphics design appli-
cations. We are specifically interested in the task of editing the
parameters of realistic materials represented as analytic BRDFs,
since they are the simplest and most commonly used models. We
present a user study investigating the relative effectiveness of three
interactive material design interfaces: physical sliders, by which
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users set the parameters of analytic BRDF models, such as diffuse
albedo and specular roughness; perceptual sliders by which users
set perceptually-inspired parameters, such as diffuse luminance and
gloss contrast; and image navigation by which material variations
are displayed in arrays of image thumbnails and users make edits by
selecting them. Fig. 1 shows examples of output from our subjects
using each of these interfaces.

We simplify material design tasks so that they can be accomplished
by novices and effectively measured, focusing on physically-based
isotropic BRDFs of real-world materials respected by the Cook-
Torrance and Ward BRDF models [Cook and Torrance 1981; Ward
1992]. Much previous work in material design focuses on the mod-
eling and editing of achromatic reflectance, so we investigate the
use of material design interfaces with and without color. We also
investigate the editing of analytic BRDF parameters in the pres-
ence of spatial variation across a surface, but not the editing of the
spatially-varying patterns themselves.

We extend our methodology from [Kerr and Pellacini 2009] to in-
vestigate how novices use these interfaces to make precise adjust-
ments and artistically explore broad material variations. Our study
consists of three parts. First, in six matching trials, subjects are
asked to match a target BRDF as closely as possible. Second, in
three open trials, subjects use their own creativity to design a BRDF
based on a suggestive image. Finally, in questionnaires, subjects
give both quantitative and qualitative feedback about the interfaces.
Twenty subjects spend roughly one hour with each of the three in-
terfaces.

We perform an analysis of objective measurements and subjective
user feedback and draw the following conclusions:

1. Given enough time, subjects with no previous training can
perform meaningful material design tasks, when supported by
the interface.

2. Subjects perform well with both slider interfaces, with
interactivity benefits outweighing benefits from using
perceptually-inspired parameters compared to physical pa-
rameters.

3. The image navigation interface performs significantly worse
than slider interfaces for matching tasks and precise adjust-
ments.

4. Within the boundaries of our study, performance scales well
with material complexity in degrees of freedom. However,
some users do poorly when multiple BRDFs interact in a
spatially-varying way.

5. Within the boundaries of our study, the introduction of color
roughly doubles the time it takes to reach a goal, and reduces
the quality of the result by a similar factor in the error space.
This indicates that chromaticity is a significant challenge in
material design.

6. While image navigation is generally inferior to the slider in-
terfaces, it supports broad artistic exploration better than pa-
rameter adjustment.

As with any user study, our observations only strictly apply within
the boundary of the tested cases. However, we believe that these
trends are general enough to apply to other closely-related material
domains, affecting the development of future material design inter-
faces. Additionally, we believe that the principles used to design
our study can be employed to evaluate additional material design
tasks in moving toward a comprehensive evaluation of material de-
sign interfaces.

2 Related Work

Analytic BRDF Models. Of the various BRDF representations,
we are specifically interested in the editing of analytic BRDF mod-

els since they give users the ability to define a BRDF using only
a small number of parameters. We choose to study the editing of
Cook-Torrance BRDFs [Cook and Torrance 1981], since they fit
measured data well [Ngan et al. 2005], and the isotropic version
of the Ward BRDFs [Ward 1992], since they still fit measured data
reasonably well [Ngan et al. 2005] and since a perceptual param-
eterization has been investigated [Pellacini et al. 2000]. To avoid
confusing novices with a large number of models, we do not in-
clude other BRDF models that are commonly used to represent re-
alistic materials, such as [Blinn 1977; Lafortune et al. 1997; He
et al. 1991; Ashikhmin and Shirley 2000].

Physical Sliders. A common practice in material editing is to edit
a BRDF by modifying directly the parameters of the analytic model.
For example, a user might input values for diffuse albedo and specu-
lar roughness. Off-the-shelf modeling and animation software such
as Maya [Autodesk Inc 2010] use this type of interface.

Perceptual Sliders. Since physical parameters are only indirectly
related to the perceived appearance of a material, researchers have
investigated perceptual parameterizations where each parameter
represents a perceptually-meaningful dimension of surface appear-
ance, such as diffuse luminance or gloss contrast. These parame-
terizations are also scaled such that linear changes in the parame-
ters yield linear changes in the perceived appearance of the surface
material. Pellacini et al. [2000] develop a perceptual parameter-
ization of the Ward BRDF model through psychophysical exper-
iments. Westlund and Meyer [2001] investigate correspondences
between traditional appearance standards such as gloss, sheen, and
haze and analytic material models. Wills et al. [2009] develop a
method for finding perceptual embeddings of measured material
data and a method for traversing that embedding. In this work, we
investigate whether manipulating perceptual parameters has bene-
fits over manipulating physical ones in editing tasks. Since no per-
ceptual parameterizations exist for all BRDFs used in this study,
we develop perceptually-inspired parameterizations based on [Pel-
lacini et al. 2000] and [Ngan et al. 2006] in Sec. 5.

Image Navigation. With image navigation, a user can view varia-
tions of materials by browsing arrays of thumbnail images. Material
edits are made by selecting a desired image. Marks et al. [1997]
explore this idea for computer graphics and suggest arrangement
schemes for displaying sets of images with variations of inter-
est. Adobe Photoshop [Adobe Systems Inc 2009] uses an interface
called “variations” to show multiple image configurations result-
ing from photographic adjustments like hue and saturation changes.
Ngan et al. [2006] propose a user interface specific to BRDF editing
that uses a perceptually-inspired image difference metric to arrange
possible BRDF configurations with perceptually-uniform spacing,
including varying BRDF models. It is argued that since novices
do not have a deep understanding of material appearance, allowing
them to choose rendered images directly might be beneficial. In this
study, we compare this interface to direct parameter setting.

Other Interfaces. Colbert et al. [2006] suggest a painting in-
terface for editing BRDF highlights with brush tools. Similarly,
[Pacanowski et al. 2008] develop a painting interface for non-
photorealistic highlights. We do not include such interface types in
this study because they utilize custom material models specific to
the control scheme. Poulin and Fournier [1995] introduce the idea
of optimizing material parameters to match painted color points on
surface geometry. We exclude this interface type because it is un-
clear how to extend it to support texture variations robustly. BRDFs
can also be defined by arbitrary curves over an angular parameteri-
zation, as used in [Lawrence et al. 2006].

Spatial Variation Editing. Editing spatially-varying BRDFs is
considerably harder than editing single BRDFs. Three editing tasks
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Figure 2: Starting and goal configurations for training and matching trials. Material models are listed above. Time limits are listed below
(see Sec. 4).

are normally performed on spatially-varying BRDFs: changing the
spatial patterns (by texture painting or synthesis), selecting regions
of similar appearance (e.g. using [Pellacini and Lawrence 2007])
and altering the BRDFs of the selected regions. In this paper, we
focus on interfaces for editing the parameters of BRDFs, leaving
the study of interfaces for editing and selection of spatial patterns to
future work. We represent spatially-varying BRDFs as linear com-
binations of basis BRDFs with spatially-varying weights [Lawrence
et al. 2006], where users edit the parameters of the basis BRDFs.
We choose this model since it fits measured data well.

Appearance Design Study. We follow the approach we used
in [Kerr and Pellacini 2009] for the evaluation of lighting design
interfaces and apply it to the material editing domain. Talton
et al. [2009] study the space of many design tasks by developing
a collaborative editing system that maps the space of desirable con-
figurations based on what previous users have produced. BRDF
editing was part of this system, but a direct comparison of various
interface paradigms was not explored.

3 Study Overview

Goal. We seek to evaluate the relative effectiveness of different
interface paradigms for material design in the context of designing
realistic materials with a focus on novice users. Specifically, (1) we
want to measure how efficiently these users can perform specific
material adjustments and (2) we want to understand which interface
paradigms provide better artistic exploration of possible material
variations.

Novice Users. We focus on novices with little or no prior knowl-
edge of material design since they make up the majority of users
who can take advantage of intuitive interfaces. We would like to
have as many people as possible capable of using graphics tools.
All subjects rated their experience level with material design as ei-
ther 1 or 2 on a scale from 1 to 5, and can be considered novices.

Reducing Complexity. Since material design is a non-trivial pro-
cess, we require a careful triage between completeness and length.
On the one hand, we want to achieve complex-enough material
editing tasks to ensure meaningful measurements. On the other,
we want to avoid bias in the data by ensuring subjects can suc-
cessfully complete the required tasks without incurring too much
fatigue. Working with novices makes this triage even more neces-
sary. We simplify the material editing task by focusing on editing
the parameters of analytic BRDFs, and while we include different
BRDF models, we do not ask subjects to select between different

models during trials. We simplify implementation of interfaces to
ensure that they can be quickly learned while sufficiently complete
to capture the main characteristics of each paradigm.

Materials. In our design tasks, subjects edit materials repre-
sented as isotropic Ward [1992] and Cook-Torrance [1981] BRDFs
(Sec. 2). We investigate three variations of these models. First, we
use achromatic materials for half of the trials and color for the other
half. Much previous work in material design focuses on the mod-
eling and editing of achromatic reflectance, and we would like to
discover how important chromaticity is in the design process. Sec-
ond, we include two trials where BRDFs have two specular lobes,
since, for some materials, such BRDFs fit measured materials bet-
ter than single lobe ones [Ngan et al. 2005]. Third, to determine
whether the presence of spatial variation affects the design tasks,
we investigate the editing of spatially-varying BRDFs represented
as linear combinations of two basis BRDFs with spatially-varying
weights, where users edit the parameters of the basis BRDFs. We
choose this model since it fits measured data well [Lawrence et al.
2006]. Examples of each material type can be found in Fig. 2.

Lighting. In our study, materials are lit by direct illumination from
a real-world environment map. Natural illumination is considered
ideal for material perception when only a single image is available
[Dror et al. 2001; Fleming et al. 2001]. We use the Grace Cathedral
environment map [Debevec 1998] since [Ngan et al. 2006] suggest
that the choice of illumination environment has little effect on ma-
terial distinction as long as it is natural, and recommend the Grace
Cathedral map. We choose to use direct illumination, rather than
global illumination, since we want to preserve interactivity and high
image fidelity during the design task. We use the tone mapping
equation Image = (Intensity · 2exposure)1/gamma with a gamma
of 2.2. Exposure is fixed so that the goal for a trial is clearly visible.
Subjects have no control over exposure or gamma.

Geometry. The geometry in our images consists of a sphere float-
ing in space. We use a sphere to avoid occlusion artifacts in glossy
reflections caused by computing direct illumination only. Vangorp
et al. [2007] suggest there may be shapes better than spheres for
material discrimination, but that spheres possess many desirable
properties. We determine that a sphere shape is the best for our
purposes given our rendering limitations.

Interfaces. We compare three user interfaces: physical sliders,
perceptual sliders, and image navigation. Implementation details
of these interfaces are presented in Sec. 5. Physical and perceptual
slider interfaces are similar in that they are designed to manipulate
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Figure 3: Goals for open trials. Starting configurations are identi-
cal to matching trials 3, 5, and 6.

one parameter at a time. Physical sliders alter the parameters of an-
alytic BRDF models directly; these parameters are related to physi-
cal reflectance properties such as diffuse energy and specular rough-
ness. Such parameters, though, are not directly related to material
appearance. Perceptual sliders alter perceptually-meaningful mate-
rial parameters, such as diffuse luminance and gloss contrast. These
parameters are scaled to be linearly related to perceptual distances.
Perceptual parameterizations are believed to be more natural for
editing purposes since they are directly related to how humans per-
ceive materials. With image navigation, a user can view variations
of materials by browsing arrays of thumbnail images. Material edits
are made by selecting a desired image. It is believed that image nav-
igation is a useful editing metaphor since novices can directly select
rendered images, rather than specifying parameter values, and since
they can preview several variations and combinations of multiple
parameters simultaneously.

Tasks. We ask subjects to perform two types of material design
tasks. During matching trials, they are asked to match a mate-
rial of an object under fixed environmental lighting to an image
of the same object and lighting with a target material configuration.
Matching trials allow us to quantitatively measure users’ perfor-
mance, while providing a clear goal for subjects who have never
experienced material design before.

This provides context for the more subjective open trials, where
users are given a photograph of several real-world objects with a
round target area removed and asked to creatively design a material
that would look good if assigned to an object placed in the target
area. These trials allow us to observe how users artistically explore
the space of possible material configurations, a more natural but
harder to measure task.

4 Experiment

We ask subjects to complete a number of trials, during which all
actions are recorded for further analysis. Each subject performs all
trials using all interfaces. These trials vary in the number of mate-
rial parameters, material model type, number of lobes, presence of
color, presence of spatial variation, and task goal.

Preparatory Studies. We conducted formal and informal prepara-
tory user studies on 15 additional subjects, the results of which are
not included in this paper. Different implementations of the various
interfaces were tested to determine a locally optimal set of controls
and to remove any implementation errors. The open and matching
goals used in the final study were tested to ensure that time limits
were appropriate and that the tasks could be completed.

Trials. We perform six matching trials and three open trials with a
progressively increasing number of degrees of freedom in the ma-
terial model. Starting configuration, goal configuration, and time
limit for each trial are summarized in Fig. 2 and Fig. 3.

For matching trials, goal configurations were taken from paramet-
ric fits presented in [Ngan et al. 2005] to measured materials in
[Matusik et al. 2003]. For grayscale trials 1 and 2, the diffuse and
specular coefficients of “metallic blue” and “white bball” were de-
saturated. For grayscale trial 3, the goal was modeled by hand after
a rendering of “acrylic violet”, since a fit was unavailable. Color
trials 4 and 5 use fits for “blue bball” and “ch-ball-green-metallic”
respectively. Trial 6 uses fits for “white-bball” and “metallic gold”
weighted by a texture. We vary matching trials in material complex-
ity to observe possible changes in users’ workflow and interfaces’
effectiveness under these conditions.

For open trials, we select target images that differ from the
workspace lighting environment and vary in content to encourage
free-form artistic exploration. We choose one grayscale and two
colored material goals with objects of varying material properties.
Objects in the same goal image share some material properties to
keep the objective from being completely unspecified.

The same initial and goal material configurations are used for all
subjects and all interfaces. Each trial has a fixed time limit, and
subjects can end the trial sooner if satisfied with the current result.
At the end of each matching trial, subjects rate the accuracy of the
matching on a scale of 1 to 5. For open trials, subjects use the same
scale to rate how satisfied they are with their result.

Questionnaire. After performing all trials with all interfaces, sub-
jects complete a questionnaire where they rate each interface on a
scale of 1 to 5 in the following categories: (1) natural way to think
about material editing, (2) preference in matching trials, (3) prefer-
ence in open trials, and (4) overall preference. Subjects also strictly
rank interfaces in each of these categories. Immediately after fin-
ishing trials for each single interface, subjects are asked to leave
free-form comments on aspects of each interface. For reproducibil-
ity, we include copies of the questionnaires as additional material.

Procedure. Twenty subjects participated in the study, chosen from
different age and educational groups. All subjects had normal or
corrected-to-normal vision. Subjects edit materials for about 3
hours each to ensure good statistical significance of our tests, while
keeping fatigue low.

Subjects complete the study in three 60-minutes sessions, one for
each interface. We randomize the order of the interfaces for each
subject. Before each session, subjects complete a training phase
to become familiar with the specific interface. We train each sub-
ject individually to allow questions, accommodating each subject’s
learning needs. The instructor verifies that the subject uses each
part of the interface, and answers the subjects’ questions. Before
proceeding to the experiment, the subject uses the interface until he
or she feels comfortable. During both the guided and free portions
of the training, a single sample goal was shown (Fig. 2). Once trials
begin, all user interface actions are recorded.

The study is conducted in a controlled lighting environment with
negligible ambient lighting, to simulate typical working conditions
of artists and maximize visibility of the screen. We use a 24-inch
Dell 2407WFPb LCD display at 1280×800 resolution at a distance
of approximately 1 foot from the subject (monitor native resolution:
1900 × 1200). All rendered images are 256x256 pixels on screen
covering an area of 4 square inches. We used an Intel 2.8 Ghz Core2
Quad Q9550 PC with 4 GB of RAM and an NVidia GeForce 9800
GT graphics card.

5 Interface Implementation

In this section we discuss our implementations of the user interfaces
included in the study. For reproducibility, we include a video as
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Figure 4: Study interface layout.

supplemental material that shows each interface in detail.

Rendering. We use the real-time rendering algorithm of [Ben-
Artzi et al. 2006] to preview BRDF edits under direct natural il-
lumination. Our implementation renders 45fps on the 256 x 256
pixel images of a sphere used in the study. We considered adding
global illumination as in [Ben-Artzi et al. 2008], but decided that
the potential artifacts resulting from approximating the BRDF at
a lower frequency might effect our measurements. The algorithm
we use doesn’t allow the roughness and Fresnel terms of the Cook-
Torrance BRDF model to be simultaneously modified. It takes ap-
proximately 0.6 seconds to switch between these parameters in our
implementation.

BRDF models. In our implementation, we parameterize the
isotropic Ward BRDF ρw as

ρw =
ρd
π

+ ρs
e(− tan2 θh/α

2)

4πα2
√
cos θi cos θo

(1)

where ρd is the diffuse albedo, ρs is the energy of the specular
component, α is the surface roughness and θi, θo, θh are the angles
between the surface normal and the incoming, outgoing and half-
angle respectively.

We parameterize the Cook-Torrance BRDF ρct following [Ngan
et al. 2005] as

ρct =
ρd
π

+
ρs
π

DGF

cos θi cos θo
(2)

with
F = F0 + (1− F0)(1− cos θb)

5,

D =
e−(tan θh/m)2

m2 cos4 θh
,

G = min
(
1,

2 cos θh cos θi
cos θb

,
2 cos θh cos θo

cos θb

)
,

where ρd is the diffuse albedo, ρs is the energy of the specular
component, α is the surface roughness, F0 is the Fresnel reflectance
for a direction orthogonal to the surface, and θb is the angle between
the outgoing and half-vector direction.

Some trials use BRDFs ρww with 2 Ward lobes defined by

ρww =
ρd
π

+ λ

(
ρs1

e(−tan
2θ/α2

1)

4πα2
1

+ ρs2
e(−tan

2θ/α2
2)

4πα2
2

)
(3)

where λ = 1/
√
cos θi cos θo. In other selected trials, we use a

spatially-varying material. This spatial variation is modeled as a
weighted sum of two Ward BRDFs ρsum = w1ρw1 + w2ρw2,
where the weights w1 and w2 are spatially-varying and sum to one
at all surface points [Lawrence et al. 2006].

Universal Interface Features. All interfaces use the same screen
layout consisting of a workspace window, a goal window, and rat-
ing buttons (Fig. 4). An undo key allows the user to walk back

through an unlimited number of edits. To compensate for the fact
that materials created using this system may not conserve energy,
a warning indicator appears in the upper right corner of the user’s
image when the BRDF is not energy conserving.

Physical Sliders. We use a slider interface as the means by which a
user sets the parameters of the BRDF model, e.g. the diffuse albedo
ρd, specular energy ρs, roughness α, m and Fresnel term F0. Each
user controlled parameter is listed with a slider bar next to it. The
parameter can be changed by clicking anywhere on the bar, and
gradual changes can be seen by dragging the slider continuously
across the bar.

Setting model parameters directly would require specifying the red,
green and blue coefficients of ρd and ρs. This would ignore com-
mon color editing practices, artificially handicapping the interface.
We use CIELAB luminance (L) for achromatic intensity, and satu-
ration and hue for chromaticity [Fairchild 1998]. We use hue and
saturation since they are the default in Maya [Autodesk Inc 2010].

Perceptual Sliders. Perceptual parameterizations differ from
physical ones in both effect and scale. In this paper, we choose
perceptually-inspired parameters based on [Pellacini et al. 2000;
Westlund and Meyer 2001]. Furthermore, since all perceptual
parameterizations are derived from achromatic data, we follow
[Wills et al. 2009; Pellacini et al. 2000] and derive parameters for
grayscale diffuse and specular components, and then add hue and
saturation to them. We use the same saturation and hue controls as
with physical sliders. Slider controls work the same way as with
physical sliders, but modify the perceptually-inspired parameters.

To determine the correct scaling of each parameter axis in BRDF
model’s configuration space, we use the image-based BRDF differ-
ence metric from [Ngan et al. 2006] since psychophysical data has
not been published for the range of BRDF parameters we investi-
gate. Letting I(ρ) be the image corresponding to BRDFs ρ, we can
approximately compute the perceptual distance, d, between BRDFs
ρ1 and ρ2 as

d2(ρ1, ρ2) =
∑

p∈pixels

∑
c∈r,g,b

(
3
√
Ip,c(ρ1)− 3

√
Ip,c(ρ2)

)2

(4)

We scale our perceptually-inspired parameters such that equal steps
of the parameter yield steps according in the distance metric. We
include a comparison of this metric to our parameterizations as a
supplemental document. For all parameterizations that follow, ρd
and ρs are represented achromatically according to CIELAB lumi-
nance in the range [0, 1].

For Ward BRDFs, we use the parameterization from [Pellacini et al.
2000] with a modified d parameter:

L = ρd
c = 3

√
ρs + ρd/2− 3

√
ρd/2

d = 1− α1/4

(5)

where L is the diffuse luminance, c is the gloss contrast, and d is
the gloss distinctness. We raise α to a power of 1/4 because it
more closely matches scaling according to equation (4) which is
valid for a larger range of α than the original experiment covered in
[Pellacini et al. 2000]. The trials using textured Ward simply have
two instances of the perceptually inspired Ward parameters.

For Cook-Torrance BRDFs, we use the following parameterization:
L = ρd
c = 3

√
ρsF0 + ρd/2− 3

√
ρd/2

d = 1−m1/4

s = 3
√

[(1− F0)ε]/[(1− ε)F0]

(6)

where L is the diffuse luminance, c is the gloss contrast, d is the
gloss distinctness, s is the gloss sheen and ε = 0.02 is the minimum
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Figure 5: Image navigation 2D layout.

allowed value of F0 when s ∈ [0, 1]. Cook-Torrance parameters L,
c, and d are similar to their Ward counterparts; with added s to
set the contrast of the specular component at grazing angles while
preserving its contrast at non-grazing angles.

For Ward BRDFs with two lobes, we use the following parameteri-
zation:

L = ρd
c = 3

√
ρs1 + ρs2 + ρd/2− 3

√
ρd/2

b = ρs1/(ρs1 + ρs2)

d = 1− α1/4
1

h = (α
1/4
2 − α1/4

1 )/(α
1/4
max − α1/4

1 )

(7)

where L is the diffuse luminance, c is the gloss contrast, b is a
lobe blending parameter, d is the overall gloss distinctness, h is
a haze parameter and αmax is the maximum possible α value for
normalization.

Image Navigation. We base our implementation of image naviga-
tion on [Ngan et al. 2006]. Their interface consists of a series of tabs
that reveal different image arrays. Some tabs show variations of ma-
terial model parameters along two axes, while others serve as color
pickers for the diffuse and specualr coefficient parameters. Images
are spaced according to the image difference metric in equation (4),
and the spacing size is determined by a user-controlled slider. As
in [Ngan et al. 2006], we limit the interface to display only two pa-
rameters simultaneously to ensure that thumbnails are large enough
to perform accurate selection.

Fig. 5 shows what our two-parameter layout looks like using image
navigation. We implement a system by which all model parame-
ters can be assigned to either a horizontal or vertical axis. From
the current configuration, two steps in either direction for either pa-
rameter axes are shown. This results in a five by five image array of
25 images representing different combinations of two parameters.
We also give the user preset configurations that are helpful combi-
nations of parameters to reduce confusion (e.g. diffuse versus spec-
ular brightness or a diffuse color picker). Since our perceptually-
inspired parameterizations scale similarly to the difference metric in
[Ngan et al. 2006], we space images by equal steps in that parame-
ter space. This may cause the space displayed in a 2D image to be
scaled differently on the horizontal than the vertical in error space
even though they are uniform in parameter space, but we don’t find
it to be a problem. We do not allow a slider to determine the size of
these steps, because with real-time feedback we feel this would be
like taking the perceptual sliders interface and simply giving multi-
ple previews at a time. By giving buttons that increase and decrease
the step sizes on a log scale, we keep image navigation and percep-
tual sliders implementations to their respective interface metaphors,
while giving image navigation the power to make small and large
edits. Rendering time for the thumbnails depends on the material
configuration, but is normally 0.25 seconds with the exception of
arrays where both gloss distinctness and sheen vary simultaneously
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Figure 6: Left: average time to completion for all trials over all
subjects (in seconds). Right: average final error for matching trials
over all subjects. Error values are from equation (4), no normal-
ization.

where it is 2.5 seconds (see previous section). We account for this
in our analysis.

6 Analysis

We present an analysis of our data in two parts. First, we analyse
the output of the rendering system as subjects proceed through each
trial. Second, we analyse the feedback from users at the end of each
trial and in the questionnaires. Unless stated otherwise, tests for sta-
tistical significance are computed with repeated measures analysis
of variance (ANOVA) [Stevens 1996]. This handles within-subject
factors that create correlations which invalidate the assumption of
independence in standard one-way ANOVA. A p value below 0.1
indicates a 90% confidence that the two population means differ
given the measure of the sample. In all figures, error bars represent
standard error.

Time to Completion. We investigate the work speed of users with
each interface. Generally, subjects are able to complete each trial
within the allotted time limit with one or more interfaces. In Fig. 6,
we show the mean time to completion for each matching trial over
all subjects.

Time to completion for image navigation is almost always signifi-
cantly higher than either physical or perceptual sliders on matching
trials (p ≤ 0.051), excepting trial 6. We believe trial 6 differs
because many subjects ran out of time or gave up early with im-
age navigation, reducing its mean time and resulting in matches of
lower quality. We conclude that image navigation must be slower
to work with on trial 6, and that we are reaching the limit of sub-
jects’ patience. The time to completion for physical and perceptual
sliders shows no significant difference on trials 2-6, but physical
sliders average 20 seconds faster than perceptual sliders on trial 1
(p = 0.053).

In open trials, the meaning of time to completion is less de-
fined since the standard of judgement used by the subject can
vary from trial to trial or even interface to interface. The only
statistically significant differences (p < 0.1) were between per-
ceptual sliders (69.0s) and image navigation (107.5s) on trial 7
(p = 0.039), and physical sliders (113.5s,201.9s) and image navi-
gation (150.9s,179.3s) on trials 8 (p = 0.080) and 9 (p = 0.048)
respectively.

Trial 1 in grayscale and trial 4 in color use the same BRDF model,
as do trials 2 and 5. The average factor of time to completion be-
tween grayscale trials and color trials is 1.886.

Matching Error. To evaluate user performance in matching tri-
als, we compute the error between the subject’s BRDF and the
goal BRDF using the image-based difference metric in equation (4)
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Figure 7: Left: example graphs of error over time (in seconds) for the individual trials shown in Fig. 1. Right: illustration of the error over
time (in seconds) for matching trials averaged over all subjects. Error values are from equation (4), no normalization.

[Ngan et al. 2006]. This metric has been shown to capture perceived
differences in BRDFs.

Fig. 7 shows the error over time for one subject performing the
same trial with all interfaces. When subjects are successful, error
decreases toward the correct solution, converging on some low error
value. This convergence is not monotonic, because users explore
the configuration space in order to reach the desired goal. In the ac-
companying supplemental material for this paper we include error
graphs for all subjects on all trials together with rendered images of
their material configurations at fixed time intervals.

To summarize the overall performance of each interface we anal-
yse the final image error for each matching trial averaged over all
subjects (Fig. 6). Both physical and perceptual sliders outperform
image navigation on all trials (p < 0.064) except for trial 4, where
image navigation has roughly the same error as perceptual sliders.
However, it took a longer amount of time to complete this trial
with image navigation (p ≤ 0.026). The error on trial 2 is espe-
cially high for image navigation. This could in part be due to the
rendering limitation specific to image navigation on Cook-Torrance
BRDFs (Sec. 5). However, this anomaly cannot be seen in trial 5,
which also uses the Cook-Torrance model. The goal in trial 2 hap-
pens to be particularly bright, and this error discrepancy is not as
pronounced when error is computed with clamped intensity values.
We conclude that these failure cases are reasonably in alignment
with the rest of the data when taking this into account.

Surprisingly, there is no significant difference in errors between per-
ceptual and physical sliders except on trial 2 where physical sliders
outperform perceptual sliders (p = 0.064). This trial again exhibits
a difference that we cannot identify conclusively. The other Cook-
Torrance trial does not show such a difference between physical and
perceptual sliders, nor do the other grayscale trials.

As with the time to completion, we compare grayscale trials 1 and 2
to color trials 4 and 5. The average factor in error between grayscale
trials and color trials is 2.167.

Convergence. To illustrate the convergence behavior of different
interfaces we average the image error across all subjects over time
in Fig. 7. This average is not statistically valid, but we find that it
gives a revealing visual summary of overall behavior. As can be
seen in the graphs, physical and perceptual sliders tend to converge
more quickly than image navigation, and with lower error. We also
see that convergence behavior of physical and perceptual sliders are
similar, though trial 2 seems to show better convergence with phys-

• physical sliders • perceptual sliders • image navigation
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Figure 8: Average of subjective image quality ratings over all sub-
jects.

ical sliders. Finally, we note that trials 2 and 6 show particularly
poor convergence for image navigation. In trial 6 with a spatially-
varying BRDF, many subjects give up or run out of time using im-
age navigation. We also see slower and poorer convergence with
the slider interfaces on this trial. Again, we cannot identify conclu-
sively what causes the differences in trial 2.

Subjective Image Quality. At the end of each trial, subjects rate
their work on a scale of 1 to 5, with 1 being the worst and 5 be-
ing the best. Matching trials are rated in terms of how close the
workspace and goal images match. Open trials are rated in terms of
how satisfied the subject is with their result. Fig. 8 shows the aver-
age ratings for each trial. This subjective image quality correlates
with the computed error of the final image with a linear correlation
coefficient of −0.5895.

In matching trials, subjects on average rate their work better when
using sliders than with image navigation on all trials (p ≤ 0.058).
Not only do subjects perform objectively better using slider inter-
faces compared to image navigation as measured by error, they per-
ceive themselves as doing better as well. Ratings for the slider in-
terfaces compared to one another contain no significant differences,
except on trial 2 (p = 0.042), as with the computed error.

In open trials, there is no significant difference in the image ratings
between any of the three interfaces, except for physical sliders hav-
ing a slightly higher average rating than image navigation on trial 7
(p = 0.015).

Interface Rankings and Ratings. Subjects rate and rank each in-
terface in 4 categories where ratings can have ties, but rankings
are forced choice (see Sec. 4). Average ratings and stacked fre-
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Figure 9: Left: Average interface ratings from questionnaire over
all subjects. Rating 5 implies best. Right: Sum of interface rankings
over all subjects. Rank 1 implies best.

quencies of rankings are shown in Fig. 9. For evaluating statistical
significance of ranks we use the Friedman test [Friedman 1937],
a nonparametric test that takes into account within-subject effects.
A low p-value indicates high confidence that subjects have made a
significant distinction between two interfaces.

In all categories except preference on open trials, slider interfaces
outrank image navigation (p = 0.074 on perceptual vs. image nav-
igation in the natural category, p ≤ 0.002 otherwise). We find
no statistical difference between ranks for the two slider interfaces.
Roughly half of subjects rank physical sliders higher than percep-
tual in overall preference, and vice versa.

We find similar trends in the interface ratings. The slider inter-
faces average to roughly equivalent in all categories. When com-
paring image navigation to slider interfaces, except for open trial
preference, image navigation is rated much lower in all categories
(p ≤ 0.002).

Complexity. We have shown that the interface used to perform
material editing influences performance. The complexity of the
material being edited has an effect on how difficult the task is to
perform, but the relative performance of the interfaces remains
unchanged. Difficulty seems to scale linearly on average with
the number of user controlled parameters in the material model.
Regression on average time to completion suggests a linear rela-
tionship (r2 ≥ 0.919). Error has a similar trend with physical
(r2 = 0.996) and perceptual (r2 = 0.880) sliders, but not as much
with image navigation (r2 = 0.499). It is unclear if we increased
complexity further, that novices would still be able to accomplish
the task. Trial 6 appears to indicate that there is a point at which
many subjects will give up. Our data does not indicate any signif-
icant trends in material editing between using the Ward or Cook-
Torrance BRDF model. The Cook-Torrance BRDF in trial 2 ap-
pears to be more challenging than the Ward BRDF in trial 1, but
the Cook-Torrance BRDF in trial 5 appears to be less challenging
than the Ward BRDF in trial 4. We make no claims as to the use-
fulness of one model over another, as our study is not designed to
give subjects a choice between the two.

7 Workflow Observations

We now discuss common trends in the way our subjects use the
different interfaces to edit materials. In Fig. 1 we show work done
by two different subjects. Corresponding error graphs can be found
in Fig. 7. Images and error graphs from all subjects and all trials can
be found in the supplemental material, as well as selected videos of
workflow.

Blocking and Refinement. Subjects do not fix each parameter
value independently and permanently. They make rough adjust-
ments to move the configuration into a good local space and hier-
archically refine into smaller and smaller spaces until the precise

configuration is reached. This means that parameters are revisited
and changed many times during the course of an editing session.
Such behavior is universal across all subjects.

Inability to Configure Image Navigation. We notice that the ma-
jority of the time spent when using image navigation is not spent
changing the configuration of the material. Subjects appear to have
trouble setting up the 2D navigation array of images. Not only do
they have to figure out which axes to look at, they must also de-
termine the scale and granularity of those axes. We observed that
most of our subjects were confused by this, despite having preset
configurations. Subjects comment “I felt limited by the layout be-
cause I could not find the combination I needed to find a match. I
was a bit confined by the tools and felt like I could not control my
work as much;” and “[with image navigation] in a way, you know
what to change, but not clear how exactly to get there. In the slider
approach, that part was a little easier.”

When using either physical or perceptual sliders, subjects made
changes far more often. As can be seen in Sec. 6, this led to faster
and better convergence on a goal. Additionally, not only did im-
age navigation yield changes less often, those changes were undone
more often. Undo is used roughly twice as often with image nav-
igation than with the slider interfaces (p ≤ 0.051). Physical and
perceptual sliders share roughly the same undo usage.

Image Navigation as Sliders. When using image navigation, al-
most all subjects displayed behavior of using only one axis at a
time, effectively reducing it to a slider interface with 5 discrete con-
figurations visible at a time. While most occurrences of this behav-
ior were interleaved with use of the 2D array or the color pickers,
some subjects would go entire trials using only this technique. This
leads us to believe that there are many situations where users think
in independent parameter space.

Sliders Equalized by Interactivity. Universally, subjects rarely
snap sliders to a particular value. They almost always drag them to
see the material in their workspace change gradually. This suggests
that the optimal workflow for novices is to smoothly vary appear-
ance until the image looks like what they are looking for. Doing
this seems to be less confusing than seeing several images side-by-
side. It also suggests that subjects are not anticipating precisely
what value a parameter should be, making many of the peceptual
scalings in perceptual parameterizations irrelevant when interactiv-
ity is available.

We investigate this behavior by disabling the ability to drag in the
slider interfaces, leaving only the option to click a specific location
on the slider, and running five additional subjects through the oth-
erwise unchanged study. In this situation, all subjects essentially
mimicked a dragging action by repeatedly cliking at small intervals
along the bar. The average number of clicks for physical and per-
ceptual sliders was roughly equal, except on trial 3 where percep-
tual sliders averaged roughly 1/3 more clicks than physical sliders
(p = 0.034). We believe that interactivity nullifies the differences
between these two interfaces and that novices prefer nudging con-
trols until an image looks right, rather than purposefully setting val-
ues.

Material Properties. After using each interface, subjects were
asked what they thought the most and least difficult aspect of the
design process was. This question was open for interpretation, but
we did get several comments about specific parameters and proper-
ties of the material models. We categorize these comments into
the adjustment of color, relative diffuse and specular intensities,
and highlight shaping (specular roughness and fresnel effects). The
number of times each of these categories were mentioned (sum of
all three questionnaires per subject) are listed below:

1. Color: 23 most difficult, 8 least difficult
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2. Relative intensities: 2 most difficult, 7 least difficult
3. Highlight shaping: 5 most difficult, 13 least difficult

We draw two pieces of information from this data. First, because
color is mentioned most often, users must feel it is an important
factor in the overall material appearance. Second, a majority of
subjects felt that color was the most difficult part of the design
process. This is surprising given that most work in developing per-
ceptual parameterizations of materials has been done in grayscale.

Exploration. In open trials subjects perform an exploratory
task that requires less fine tuning. Many subjects commented
directly that they were exploring in a wide space rather than
refining. For example, one subject commented “the open trials had
me looking all over the place for cool options, where the matching
I tended to make smaller changes.” Another commented “my
workflow was completely random and experimental when doing
open trials.”

We observe that the performance of the image navigation interface
compared to sliders improves greatly from matching to open trials.
Users explain in comments, “I used [image navigation] much like
the other ones for matching, but for open trials it was a lot easier
to see something good here;” “[with image navigation] matching
was very difficult. I had to try many different things. The open
trials were enjoyable. I could pick from the options the [preset]
buttons brought up;” and “[with image navigation] the open ones
were easier because I got a better view of what I wanted.”

We conclude that given its problems with precise adjustment, image
navigation must be better at pure exploration, but lacks the needed
control for a complete solution to material design. Otherwise, it
would not be able to compete so closely with sliders in these open
trials.

8 Discussion and Conclusions

We now discuss the results of our study. We remind the reader that
strictly speaking, our observations only apply within the boundary
of the tested cases, as with all user studies. At the same time, it
is our belief that the trends observed in this study should apply to
other similar appearance design tasks for novices.

Novices Can Edit Materials. We have found that novices are capa-
ble of designing and editing realistic materials. When an interface
supports them, novices can perform relatively complex tasks in an
efficient way. This suggests that future work on material design
interfaces and tools for novices would be fruitful.

Physical and Perceptual Sliders. We found that subjects can per-
form material editing equivalently well whether they use physical
parameters or the perceptually-inspired parameters provided by our
implementation. Additionally, the subject pool is split in half as to
which is preferred. We conclude that interactivity is more impor-
tant than whatever advantages the perceptually-inspired parameters
we gave our subjects yield.

Image Navigation vs. Sliders. Our most prominent result is the
poor performance of the image navigation interface compared to
individual parameter adjustment via sliders. This is because image
navigation cannot show enough parameter combinations simultane-
ously due to the limited screen real estate. Perhaps the parameter-
based organization used in [Ngan et al. 2006] is not optimal, but if
so, the optimal layout remains undiscovered.

Material Complexity. We find color to be a significant challenge
in material editing. It takes almost twice as long for subjects to
match colored materials than grayscale, and the error is signifi-
cantly higher. Subjects also tell us that color is often the most diffi-

cult part of the design process. We believe that there is need for an
investigation of methods for perceptual color manipulation of ma-
terials under colored lighting. Note that editing color in material
editing is very different from setting color in image editing.

We find the difficulty of trials, measured by time to completion and
error, to be linear in the number of material parameters given to the
users for the slider interfaces. When editing materials with more
than one lobe, subjects could accomplish the task given enough
time. We found spatially-varying materials to be more challeng-
ing than the other types of materials studied, resulting in higher fi-
nal error. Finally, we discovered no significant difference between
editing Ward or Cook-Torrance BRDFs.

Common Workflow. Our subjects exhibit common workflow pat-
terns. We notice that subjects generally employ a block-and-refine
workflow, moving from large edits to small edits. In slider inter-
faces, subjects do not set parameters directly, but prefer to smoothly
change them until they look right. This interactivity is important,
and reduces the effect of the parameterization type.

Exploration. The advantage of slider interfaces over image navi-
gation is less obvious in open trials. Taking into account the control
problems of image navigation, this implies that navigation is a bet-
ter metaphor to support exploration of broad material variations.

Limitations. The main limitation of this work is the scope of mate-
rial editing tasks we investigate. First, we have only studied a subset
of possible BRDF models. Second, we did not explicitly investigate
whether novices can effectively pick a material model from a list of
available options. Third, we did not investigate the creation of spa-
tial patterns, although we believe that this task is well beyond the
capability of novice users. Fourth, we forego the study of interfaces
such as painting because of material representation restrictions.

9 Summary

This paper presents a first step toward quantitatively evaluating
the use and effectiveness of user interfaces for material design,
with a focus on novice users. We find that novices can edit ma-
terials equally well with sliders that control either physical or
perceptually-inspired parameters as long as interactivity is avail-
able. Image navigation can help users find important material con-
figurations when artistically exploring possibilities, but performs
slower and with less accuracy when precise adjustments are neces-
sary.

Novices tend to work similarly to one another, making large edits
first and then systematically readjusting each parameter by smaller
steps until converging on a final solution. They prefer to drag slid-
ers to see changes happen smoothly rather than snapping values
directly, implying that a continuous traversal of the configuration
space is more appropriate for novices than requiring them to input
parameter values directly.

There are many opportunities for future work in this area. We only
study a small subset of interfaces and models for material design,
and the development of a method to compare interfaces that operate
on different material models would be useful. Long term studies of
expert users interacting with material design interfaces on complex
scenes with long rendering times would also be of interest.
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